Arithmetic functions, prime counting function and polynomials

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Means of the Values of Prime Counting Function

In this paper, we investigate the means of the values of prime counting function $pi(x)$. First, we compute the arithmetic, the geometric, and the harmonic means of the values of this function, and then we study the limit value of the ratio of them.

متن کامل

Reflections on Symmetric Polynomials and Arithmetic Functions

Abstract. In an isomorphic copy of the ring of symmetric polynomials we study some families of polynomials which are indexed by rational weight vectors. These families include well known symmetric polynomials, such as the elementary, homogeneous, and power sum symmetric polynomials. We investigate properties of these families and focus on constructing their rational roots under a product induce...

متن کامل

On Relatively Prime Sets Counting Functions

This work is motivated by Nathanson’s recent paper on relatively prime sets and a phi function for subsets of {1, 2, 3, . . . , n}. We establish enumeration formulas for the number of relatively prime subsets and the number of relatively prime subsets of cardinality k of {1, 2, 3, . . . , n} under various constraints. Further, we show how this work links up with the study of multicompositions. ...

متن کامل

Counting Roots of Polynomials Over Prime Power Rings

Suppose $p$ is a prime, $t$ is a positive integer, and $f\!\in\!\mathbb{Z}[x]$ is a univariate polynomial of degree $d$ with coefficients of absolute value $<\!p^t$. We show that for any fixed $t$, we can compute the number of roots in $\mathbb{Z}/(p^t)$ of $f$ in deterministic time $(d+\log p)^{O(1)}$. This fixed parameter tractability appears to be new for $t\!\geq\!3$. A consequence for arit...

متن کامل

On Counting Polynomials of Some Nanostructures

The Omega polynomial(x) was recently proposed by Diudea, based on the length of strips in given graph G. The Sadhana polynomial has been defined to evaluate the Sadhana index of a molecular graph. The PI polynomial is another molecular descriptor. In this paper we compute these three polynomials for some infinite classes of nanostructures.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2012

ISSN: 1331-4343

DOI: 10.7153/mia-15-48